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True random number generator

On 1 bit:

|0〉 H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

outputs 0 or 1 with probability 1
2

On 2 bits:

|x〉 = |0〉 H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|y〉 = |0〉 H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

outputs 0, 1, 2 or 3 with probability 1
4



True random number generator

In general

|0〉 H⊗n
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

ouputs any integer in [[0, 2n[[ with probability
1

2n
.

H|0〉 ⊗ · · · ⊗ H|0〉︸ ︷︷ ︸
n

=
1

2n/2

2n−1∑
x=0

|x〉



Boolean functions

So far we know how to build quantum circuits computing NOT and XOR.

What about other logical gates, e.g. AND and OR?

Recall that quantum gates are represented by unitary matrices, hence always reversible.

=⇒ ancillary qubits are needed



The Toffoli (or CCNOT) gate
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Reversible evaluation

If f : {0, 1}n → {0, 1} is any boolean function

consider the gate Uf on n + 1 qubits defined by

Uf : |x〉 ⊗ |y〉 7→ |x〉 ⊗ |y ⊕ f (x)〉.

You may check that this is a unitary operator on V2n ⊗ V2 = (V2)⊗(n+1)

that allows to evaluate f on x without losing x:

Uf (|x〉|0〉) = |x〉|f (x)〉.



Fact

For any boolean function f : {0, 1}n → {0, 1}

the quantum gate Uf can be implemented using only Toffoli and X gates.

Classical analogue: any boolean function can be generated using only the NAND gate

CCNOT(|x〉 |y〉 |1〉) = |x〉 |y〉 |NAND(x , y)〉



Example : the Deutsh algorithm

There exists 4 boolean functions f of a single variable: two of them are constant

f (x) ≡ 0, f (x) ≡ 1, (type 0)

while the two others are not:

f (x) = x , f (x) = 1⊕ x . (type 1)



Example : the Deutsch algorithm

Suppose you are given one of those four functions f (as a black box: the only thing

you can do is evaluate the function on inputs of your choice) and asked what type it is.

In the classical world, clearly two evaluations of f are needed (and sufficient).

input f

output f (0)⊕ f (1)

The Deutsch algorithm finds out the type of f with a single quantum evaluation.



Example : the Deutsch algorithm

The following circuit computes the type of f :

|q0〉 = |0〉 H
Uf

H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|q1〉 = |0〉 X H

(Can check how the circuit reduces for each of the 4 possible Uf )
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Faster computations

The whole point of quantum computing is that some quantum algorithms exhibit

quantum advantage: i.e. run ”faster” than the best known classical algorithms

In extreme cases, this leads to

quantum supremacy: i.e. the ability to compute things that could never practically

be achieved with classical computers.

Oct. 2019: Sampling random quantum circuits on 53 qubits (Google)

Dec. 2020: Quantum computational advantage using photons

https://arxiv.org/pdf/2012.01625.pdf


Complexity of an algorithm

Classically: the complexity of an algorithm A is a bound on the number of computing

steps needed for an input of a given size

i.e. the function

n 7→ max
|x |=n

NA(x)

where NA(x) denotes the number of steps used to perform A on x in a given

computing model (usually: Turing machines)

http://morphett.info/turing/turing.html


Quantum computing model

There exist a (rather inconvenient) notion of quantum Turing machine

Most people prefer to use the (equivalent) quantum circuit model:

• given input x : a circuit UA,x made out of quantum gates taken from a standard

generating set is prepared

• the output y is the result of the measure of UA,x |0〉

• (then some classical post-processing may be applied)

The complexity of the quantum algorithm is a bound on the number of gates needed:

n 7→ max
|x |=n

|UA,x |.

https://en.wikipedia.org/wiki/Quantum_Turing_machine


The Deutsch-Jozsa problem

Given a boolean function f : {0, 1}n → {0, 1} assumed to be either

• constant: f (x) ≡ 0 or f (x) ≡ 1 (”type 0”) or

• balanced: |{x | f (x) = 0}| = |{x | f (x) = 1}| = 2n−1 (”type 1”),

problem: compute its type.

A classical algorithm needs at least 2n−1 + 1 evaluations of f to decide

=⇒ EXP (EXPonential time) complexity class



The Deutsch-Jozsa algorithm

Proposition: output is |0〉⊗n ⇐⇒ f is constant

EQP (Exact Quantum Polynomial time) complexity class

=⇒ exponential speedup !



Deutsch-Jozsa: remarks

• Here Uf is considered an oracle for f (black box implementation)

• Classical decision algorithm: 2n−1 + 1 evaluations are required to guarantee the

answer... but we can get a probable answer with much less evaluations.

• With k evaluations, assuming constant and balanced functions are equiprobable:

• if not all values are equal, f is certainly balanced

• if all values are equal, f is constant with probability

≥ 1

1 + 21−k
≥ 2

3
for k ≥ 2



Probabilistic algorithms

In practice: we prefer a fast algorithm with a good probability of giving a right answer

to a slow algorithm that is always right!

Example: Rabin-Miller vs AKS primality tests

The Deutsch-Jozsa problem is in the

BPP (Bounded-error Probabilistic Polynomial time) complexity class

But since quantum algorithms are typically also probabilistic...

The speedup here is not so impressive after all!

https://en.wikipedia.org/wiki/Miller-Rabin_primality_test
https://en.wikipedia.org/wiki/AKS_primality_test


Aside: the Complexity Zoo

• We know that P ⊆ NP (Nondeterministic Polynomial time)

• Whether the inclusion is strict is an open question ($1,000,000)

• We also know that P ⊆ BPP ⊆ BQP (Bounded-error Quantum Polynomial time)

• Reverse inclusions also unknown;

complexity classes are a real zoo

https://www.claymath.org/millennium-problems/p-vs-np-problem
https://complexityzoo.uwaterloo.ca/Complexity_Zoo


Upcoming

Two algorithms displaying a clear quantum advantage over the classical counterparts:

• Grover’s algorithm

unstructured search among n items in O(
√
n)

• Shor’s algorithm

factoring a n-bit integer in O(n3 log n)
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